Hjertetåken, også kalt IC 1805, er en stjernetåke i stjernebildet Kassiopeia med en avstand på 7500 lysår fra Jorden. Formen passer til Valentinsdagen, og dette hjertet lyser sterkt i rødt lys som sendes ut av dets mest fremtredende element: eksitert hydrogen. Den røde gløden og den større formen er alle skapt av en liten gruppe stjerner nær tåkens sentrum. I hjertet av Hjertetåken er unge stjerner fra den åpne stjernehopen Melotte 15.
Foto: John Corban & the ESA/ESO/NASA Photoshop FITS Liberator
I Astronomi nr. 1 har vi selvfølgelig en artikkel om James Webb-teleskopet, som akkurat nå er framme og nå avkjøles og gjøres klar til å starte observasjonene. Vi er også ekstra glade for at vi denne gangen har en artikkel om Kuiperbeltet skrevet av Jane Luu, som faktisk var den som oppdaget det.
I tillegg er det artikler om blant annet stjernebilder, teleskoper og foreningen Bevar mørket!
Her er en oversikt over innholdet:
Giganten i rommet: James Webb-teleskopet
De neste romteleskopene: Euclid og Nancy Grace Roman
Gigantisk strålingsutbrudd: Magnetar observert med instrument utviklet i Norge
På sporet av Kuiperbeltet
Kattøyetåken
Kan kosmologer teste strengteori?
Teleskoper del 3: Reflektoren
Bevar mørket
Stjernebildet: Løven
Sirius B fotografert fra Norge
Faste spalter:
Astronytt: Nyheter fra verdensrommet
Stjernehimmelen februar til mai
Rapport
Astromiks: Bokanmeldelse, lederspørsmål, m.m.
Astrogalleri: Lesernes egne bilder
Meld deg inn i Norsk Astronomisk Selskap her for å abonnere på bladet. Bladet blir også tilgjengelig hos Narvesen i løpet av februar.
Denne gangen har vi slått til med et spesialnummer om Melkeveien? Hvorfor har Melkeveien spiralarmer? Hvor i galaksen er vi? Hva gjør du for å ta fine bilder av Melkeveien? Hva er verdt å se på? Hva har gjødselbiller med Melkeveien å gjøre? Alt dette og mer til får du svar på i denne utgaven. I tillegg presenterer vi de beste bildene fra fotokonkurransen.
Kometen «C/2021 A1 Leonard» kan bli en fin komet å se visuelt utover i 2021. Tredje desember er den i nær sammenstilling med kulehopen Messier 3. Utover mot 12. desember blir den stadig sterkere! Se mot øst tidlig på morrakvisten i 5-6-7 tiden!
Komet Leonard ble oppdaget av Greg Leonard på Mount Lemmon Observatory i USA den 3. januar 2021.
Nylige bilder viser allerede en anstendig koma og hale. Mange spekulerer med stor entusiasme og interesse i at vi får se kometen Leonard visuelt synlig i desember.
På to uker har visuell magnitude økt fra 11,5 til 10(4.nov).
11. desember er det forventet mag. 5.
Dens koma har økt i vinkelstørrelse fra 4′ til 9′ etter å ha utviklet en sterk ytre glorie med intens grønn farge, og halen har vokst fra 5′ til 16′ i lengde.
De beste utsiktene til å se kometen Leonard i Norge vil være om morgenen(5-6-7tiden) fra nå og frem til 12. desember når den blir for lav til å observere.
12.desember er den nærmest jorden, knapt 35 millioner kilometer (0.2333908AU)
Wikipedia definerer en komet som et mindre himmellegeme som kretser rundt en stjerne. Når den befinner seg tilstrekkelig nær stjernen, fremtrer en synlig koma (atmosfære) eller en hale som først og fremst skyldes påvirkningen fra stjernens stråling på kometkjernen. Kometkjerner er svakt sammenholdte samlinger av is, støv og mindre steinpartikler, og varierer i størrelse fra ca. 100 meter til 30 km.
De store spørsmålene i livet: Hvorfor lander brødskiva alltid med pålegget ned? Hvordan får de skipet inn i flasken? Og hvilket teleskop skal jeg kjøpe? Tre spørsmål du kan fundere på i lang tid. I en liten artikkelserie skal jeg forsøke å svare på det siste av disse. Det vil si at jeg ønsker ikke å svare på det, fordi jeg anser spørsmålet som umulig å svare på. Men jeg ønsker å gi nok informasjon til leserne så dere forhåpentligvis har nok til å svare på dette spørsmålet selv.
Grunnen til at jeg ikke ønsker å komme med noen svar, er at som så mye annet her i livet, så er dessverre svaret: «Det spørs!». For selv om det er vanlig at de fleste diskusjoner har sine«svar» med to streker under, oppdager jeg til stadighet at det finnes nyanser i alt. Og svarene er ikke så lett tilgjengelige som du skulle tro ved første (eller femte) øyekast.
Det perfekte teleskopet fins ikke
Som student fikk jeg spart meg opp nok penger til at jeg hadde råd til en 8-tommers Dobson-type Newton-kikkert. Den kjøpte og sendte ei venninne i USA til meg. Det var mye billigere enn jeg fikk kjøpt her til lands på den tiden. Dette teleskopet var med meg i mange år og ga meg mye glede.
Første gang jeg fikk møte en skikkelig ringrev i astromiljøet, fikk jeg passet solid påskrevet. Han kunne fortelle meg, med stor overbevisning, at refraktor var det eneste som gjaldt om en var «seriøs». Alt annet var bare leketøy inntil en fikk råd til å kjøpe et skikkelig teleskop. Min fine 8-tommers Dobson var med ett ikke seriøs lenger. Jeg var en amatør blant amatører med et leketeleskop jeg burde bytte ut så snart som mulig for å bli med de seriøse gutta.
X antall teleskop senere er det tydelig at ethvert teleskop har sine fordeler og ulemper. Det å si at én teleskoptype er alle andre overlegen er i beste fall en overdrivelse, så jeg vil heller forsøke å gi et hint om hva de forskjellige teleskopene er best til. Men selv dette er vanskelig å svare på. Det finnes så mange typer, og de har alle sine fordeler og ulemper. At alle teleskoper finner sin himmel, er ikke bare en klisjé.
Jeg kommer ikke til å gå gjennom absolutt alle typer teleskopdesign, siden det finnes nærmest utallige. Men jeg vil ta de vanligste typene som er på markedet, og gi en kort oversikt over fordeler og ulemper med hver enkelt.
Aller først vil jeg gå gjennom en del egenskaper som er viktige og ikke så viktige når det gjelder teleskoper. Deretter fortsetter artikkelserien med refraktorer i Astronomi nr. 4, reflektorer i nr. 1 og katadioptriske teleskop (blanding av refraktor og reflektor) i nr. 2/2022.
Slik fungerer et teleskop
Et teleskop har en linse eller et speil som samler lyset i et brennpunkt. Deretter forstørres bildet som dannes i brennpunktet av et okular. Den lyssamlende evnen bestemmes av diameteren på linsen eller speilet, mens forstørrelsen bestemmes av brennvidden til teleskopet og okularet.
Forstørrelse
Først en egenskap som jeg ofte ser blir misforstått og misbrukt. Det første spørsmålet jeg ofte får er: «Hvor mye forstørrer teleskopet?» Det er omtrent som da vi var små og så på speedometeret på biler, og der speedometeret gikk lengst, var vi overbevist om at var den beste bilen. Forstørrelse er også noe som ofte blir brukt som lokkemiddel for billige teleskoper. «Forstørrer tusen ganger!» er ikke uvanlig. Ethvert teleskop kan forstørre tusen ganger med riktig okular, men det er totalt ubrukelig i de fleste tilfeller.
En regel som jeg har brukt med hell, er at maksimal forstørrelse du kan bruke med et gitt teleskop, er to ganger diameteren til objektivet i millimeter. Så dersom du har et linseteleskop med en diameter på 100 mm, så er maksimal forstørrelse ca. 200 ganger. Og det er kun dersom teleskopet er veldig bra optisk og det er bra forhold. Noe mer enn dette vil gi et bilde som er blast, lyssvakt og uten flere detaljer.
En annen sak er at hvor høy forstørrelse du trenger, er avhengig av hva du skal se på. Planetene og Månen krever gjerne en del forstørrelse for å se detaljene skikkelig, mens galakser og stjernetåker normalt er så store at du ikke trenger så mye forstørrelse for at de skal bli store i teleskopet, og ofte er det lettere å se tåkene dersom det er litt «luft» rundt dem.
Som du kan skjønne, så finnes det ingen «superokularer» du kan bruke til alt. Du bør gjerne ha minst tre okularer. Ett til lav forstørrelse, ett til middels og ett til høy. Om du har råd til flere, så kan du gjerne supplere litt mellom disse også.
Forstørrelse
Tre bilder av Saturn slik den ser ut i en 11-tommers reflektor med 400 ganger forstørrelse (til venstre), 5-tommers reflektor med 200 ganger forstørrelse (i midten) og 5-tommers reflektor med 400 ganger forstørrelse (til høyre). Her ser vi tydelig at Saturn i bildet i midten og til venstre er omtrent like lys og tydelig, men at 400 ganger forstørrelse i et 5-tommers teleskop (125 mm) er for mye. Her er Saturn mye mørkere og mer utydelig. Foto: Rocket Roberts
Lyssamlendeevne
Teleskopets lyssamlende evne er alfa og omega dersom du ønsker å se på objekter utenfor vårt solsystem, for disse er gjerne lyssvake (med noen hederlige unntak), så mest mulig lyssamlende evne er viktig. Det eneste som da gjelder, er størrelse: Jo større linse foran, desto mer lys blir samlet.
Oppløsning
Et teleskops oppløsning er igjen, stort sett, kun avhengig av størrelse. Oppløsningen til et teleskop forteller hvor nær hverandre to stjerner kan være og du fremdeles ser to stjerner og ikke en.
Vi lever under noen kilometer med atmosfære og den «koker og syder» og gjør at bildet aldri blir helt stabilt. Det er derfor sjelden at du får utnyttet oppløsningen i virkelig store teleskoper uten at du bruker spesielle fotogra- fiske teknikker. Jeg har én gang i livet opplevd at jeg og noen andre kunne dra opp i 700 ganger forstørrelse på Saturn med et 14-tommers teleskop her i Norge. Men da var atmosfæren utrolig stabil i kanskje et kvarter, før det gikk tilbake til den sedvanlige kokingen. Vanligvis er oppløsningen sjelden under ett buesekund uansett hvor stort teleskopet er. Ett buesekund tilsvarer tjukkelsen på et hårstrå 10 meter borte.
F-tallet
Et tall som ofte brukes, er det såkalte f-tallet. Dette gir forholdet mellom brennvidde og diameter på objektivet. Brennvidden er, enkelt forklart, avstanden fra objektivet til fokus. F-tallet har lite å si for visuell astronomi, i alle fall når det gjelder hvor lyssvake objekter du kan se. Men dersom du tar utgangspunkt i det samme okularet, så vil en dobling i f-tall bety dobbelt så høy forstørrelse og halvparten så stort synsfelt. Så det er noe du kan tenke på.
For foto betyr f-tallet en del for hvor lang eksponeringstid du trenger. Dobles f-tallet, firedobles eksponeringstiden.
F-tall og forstørrelse
Har du et teleskop med diameter 100 mm og 900 mm, blir f-tallet 900/100 = 9 (skrives ofte f/9). Setter du på et vanlig okular med brennvidde 25 mm, blir forstørrelsen 900/25 = 36 ganger. Har du derimot et teleskop med diameter 100 mm og f/5, blir brennvidden 500 mm og forstørrelsen 500/25= 20 ganger.
Okularet
En siste ting som kan begrense kvaliteten på bildet du får inn på netthinnen, er kvaliteten på okularet. Om du sammenligner de beste med de dårlige, og endog «gjennomsnittlige», okularene, så er det omtrent som om teleskopet har fått briller. Skarpheten øker betraktelig, fargene blir klarere, kontrasten bedre.
Okularene som følger med mange teleskoper, har jeg av egen erfaring sett er alt fra middels kvalitet til rent søppel. Og med søppel mener jeg at jeg ikke ville brukt det som fyllmasse engang. Jo lavere f-tall, desto mer kreves av okularet. De enkleste er av typen Plössl. De gir et greit felt og skarpt bilde, og de er gjerne relativt rimelige. De dyreste er gjerne spesialdesign fra produsenter, slik som Nagler fra TeleVue, og koster gjerne mange tusen. Det kan føles merkelig å betale tusenvis av kroner for et godt okular, men på den andre siden så vil et godt okular være en god investering som kan vare livet ut, uavhengig av hvilket teleskop man har. Okularets brennvidde (apparent field på engelsk) går fra 50 grader til over 100 grader. Dette angir feltet du ser når du titter inn i okularet. Å se i et teleskop med lite synsfelt, blir litt som å se gjennom et rør, mens med de største feltene føles det som å titte gjennom et vindu. Dersom du deler okularets synsfelt med forstørrelsen, får du det reelle synsfeltet, det vil si hvor mye av himmelen du ser i okularet.
Synsfelt
Å se gjennom et teleskop blir litt som å se gjennom et rør. Denne figuren viser forskjellen mellom et vanlig Plössl- okular og et dyrere vidvinkelokular. Okularene har lik forstørrelse, men ulikt synsfelt. Bildet til venstre tilsvarer et Plössl-okular med synsfelt 52 grader, mens det til høyre tilsvarer et vidvinkelokular med 82 grader. Med et vanlig teleskop med diameter 10 cm, brennvidde 90 cm og okular med brennvidde 25 millimeter, blir forstørrelsen 36 ganger. Med okularet til venstre blir synsfeltet til teleskopet 1,4 grader og med okularet til høyre blir det 2,3 grader. Foto: Fjordane Astronett
Observasjonsmål
Det er viktig å tenke på hva du skal du se på. Om du er mest interessert i planeter, Månen og kanskje kulehoper, er oppløsning og kontrast det viktigste. Om galakser og stjernetåker er på menyen, er lyssamlende evne det viktigste.
Dette er selvsagt veldig grovt inndelt, men gir en pekepinn på hvor du bør satse pengene. Bokstavelig talt. Skal du fotografere, er spørsmålet om du skal fotografere objekter i eller utenfor solsystemet. Det første krever gjerne høyt f-tall og lang brennvidde, det siste et lavt f-tall for å korte ned på eksponeringstiden.
Til slutt er det et visdomsord som jeg gjerne vil dele videre: Det beste teleskopet du har, er det du bruker. Det er mange som kjøper store, superavanserte teleskoper som de aldri bruker fordi det er for mye styr og tar for mye tid å sette opp. Så et spørsmål du alltid bør stille deg er: Har jeg et sted å lagre det? Må jeg bære det ut og inn hver gang? Og hvor tungt orker jeg å bære? Hvor lang tid tar det å sette opp? Om du bruker en time hver gang, og må slite på deg brokk for å slepe det ut, vil det som regel havne på Finn etter en stund til glede for andre som får billig utstyr, men til tap for deg.
Astronomi nr. 4 med neste del i artikkelserien er nå i salg hos Narvesen og på vei til medlemmene. Les mer om innholdet i nr. 4 her.
Meld deg inn i Norsk Astronomisk Selskap nå og få nr. 4 gratis!
I Astronomi denne gangen kan du lese spennende artikler om Universets barndom og om utforskningen av Solsystemet. Dessuten har vi nok en artikkel om en pionér fra astronomiens historie, John Goodricke. I tillegg har vi nå startet med en artikkelserie som henvender seg til dere som har tenkt å kjøpe teleskop.
Meld deg inn i Norsk Astronomisk Selskap her. Da får du Astronomi nr. 3 og 4 i postkassa for 250 kroner.
Her er en oversikt over innholdet:
På sporet av de første stjernene. En spesiell type supernova kan gi ny kunnskap om det tidlige universet.
Født sånn eller blitt sånn? Hvorfor er Venus så forskjellig fra Jorda?
Astronomi til folket! Mye astronomi i Store norske leksikon
Skjedde inflasjonsfasen? Svaret kan ligge i gravitasjonsbølger fra big bang.
Finnes det stjerner av antimaterie? 14 kandidater kan gi svar på hvor mange antimateriestjerner som kan eksistere i universet.
Astronomi fra Månen. På Månen slipper man mange av problemene med å observere fra Jorda.
Hvilket teleskop skal du kjøpe? Første del i en artikkelserie om teleskop
Historisk: John Goodricke, som observerte lysstyrkevariasjoner hos Algol.
DAVINCI+ Bilde: NASA
Faste spalter:
Astronytt: Nyheter fra verdensrommet.
Stjernebilde: Pegasus
Stjernehimmelen september til november
Rapport
Astromiks
Astrogalleri
Neste nummer:
Astronomi nr. 4 kommer i slutten av november. Det blir et temanummer om Melkeveien.
Søndag 6.juni 2021 arrangerer Hedmark Geologiforening søk etter meteoritten som falt ned i Løten-området i januar. Takket være optiske peilinger fra Norsk Meteornettverk og seismiske peilinger fra NORSAR, vet vi at meteoritten ligger i et relativt lite område (100x100m).Meteoritten er allerede den neste Norske meteoritten, så denne skulle vi veldig gjerne funnet og stilt ut på museet. Kan du hjelpe til med å lete?
Meld deg på til Ole Nashaug innen lørdag. Kontaktinfo: onashoug@bbnett.no , 97721571.
Det er maks 30 deltakere tillatt pga gjeldende smittevernregler i Løten kommune.
Vennlig hilsen Vegard Rekaa Norsk Meteornettverk Tlf.93024034
Solar Orbiter (venstre) og Parker Solar Probe på vei mot Sola. Illustrasjon: ESA/ATG medialab (Solar Orbiter), NASA/Johns Hopkins APL (Parker Solar Probe).
Med Solar Orbiter og Parker Solar Probe reiser vi til Sola for første gang.
Terje Fredvik, Senioringeniør ved Rosseland senter for solfysikk, UiO
La oss starte med en analogi: Tre fuglekikkere går tur da de hører sangen fra en sjelden fugl fra den andre siden av dalen. Den ene, la oss kalle henne Iris, monterer det dyre og tunge feltteleskopet sitt og kan se fuglen klart selv om den er en hel kilometer unna. Den andre fuglekikkeren, kalt Sporty Spice, tar med seg en enkel og lett jaktkikkert, krysser dalen og klatrer opp i et høyt tre bare 284 meter unna fuglen. Når hun er så nærme gjør det ikke noe at kikkerten ikke er av aller høyeste kvalitet. Fra toppen av treet kan hun dessuten studere fuglens hodefjær ovenfra.
Den siste fuglekikkeren, den nokså distré dr. Parker, har glemt å ta med seg kikkert. Han gjemmer seg derfor bak en busk bare 46 meter unna fuglen, og satser på at han kan undersøke fuglen bare ved å bruke sin egen hørsel og luktesans. Hvem har valgt den beste observasjonsstrategien?
På vei mot Sola
Fram til ganske nylig har romteleskoper som studerer Sola, blitt plassert i bane i Jordas nabolag, med en avstand fra Sola på 1 astronomisk enhet (AU). Eksempler er IRIS, Hinode og SOHO. ESA/NASAs Solar Orbiter følger en helt annen bane. Den er sendt i retning Sola for å ta bilder av Sola fra kortere avstand enn noen gang tidligere. For å komme stadig nærmere Sola får Solar Orbiter drahjelp av tyngdekraften fra Venus. Slik kan den endre banen sin uten å bruke for mye drivstoff.
Etter mange forbiflyvninger vil Solar Orbiter i 2027 være på sitt nærmeste til Sola: 0,284 AU. Dette er godt innenfor banen til Merkur. Venuspasseringene skal også brukes til å endre baneplanet til Solar Orbiter. I utgangspunktet beveger sonden seg langs ekliptikken, akkurat som Jorda. For hver passering vil vinkelen mellom baneplanet og ekliptikken øke, slik at om noen år vil vinkelen være så stor som 33°. Solar Orbiter vil da ha en bane som gjør at man for første gang kan ta bilder av Solas polområder.
Solvindmysteriet
Sola sender ikke bare ut elektromagnetisk stråling, men også en kontinuerlig strøm av ladde partikler, kalt solvinden. Selv om vi har prøvd å forstå solvinden i mer enn 100 år, vet vi ennå ikke nøyaktig hvordan den oppstår og hvordan partiklene blir akselerert opp til hastigheter som nærmer seg 800 km/s. Det vi vet, er at solvindpartiklene har elektrisk ladning og at elektrisk ladde partikler påvirkes av magnetfelter. Sola har et sterkt, komplekst og varierende magnetfelt. Forstår vi magnetfeltet, vil vi avsløre flere av solvindens hemmeligheter.
Dessverre vet vi ikke i detalj hvordan Solas magnetfelt blir til, hvordan det utvikler seg i tid eller hvordan det forandrer seg utover i Solas atmosfære. Men instrumentene til Solar Orbiter er skreddersydde for å gjøre målinger som kaster lys over sammenhengen mellom magnetfeltet og solvinden. Solas polområder spiller en helt spesiell rolle i dannelsen av solvinden. Den raskeste solvinden sendes ut fra polene, og gass som strømmer fra ekvator mot polene, er sannsynligvis med på å drive de periodiske endringene i Solas magnetfelt.
Eksempler på data som vil komme fra de ti forskjellige instrumentene om bord Solar Orbiter. Norske solfysikere er involvert i instrumentet SPICE. Grafikk: Solar Orbiter/ESA/NASA
Ti instrumenter
Solar Orbiter er et avansert romobservatorium med ti instrumenter om bord. Seks fjernmålingsinstrumenter tar bilder av Sola. Siden ingen romsonde kan overleve en ferd inn i Solas indre atmosfære for å gjøre målinger der, bruker forskerne fjernmåling for å undersøke atmosfæren indirekte. For å forstå hvordan Solas atmosfære er bygd opp hele veien fra fotosfæren og ut til den hete koronaen, trenger vi bilder tatt i mange forskjellige bølgelengder. Fjernmålingsinstrumentene kan ta bilder i synlig lys, ultrafiolett lys og røntgenstråler. Blant fjernmålingsinstrumentene er SPICE, som tar bilder av spekteret til Sola og som norske solfysikere er involvert i.
Fire in situ-instrumenter undersøker solvinden og magnetfeltet direkte, slik de er på stedet, like ved romfartøyet. Så kommer det geniale: Ved å kombinere fjernmåling og in situ-målinger får man først bilder av soleksplosjoner, gasskyer som sendes ut i rommet, sjokkbølger i atmosfæren og områder som man mistenker er kilder til solvinden. Deretter får man etter få minutter målinger av hvordan fenomenene har påvirket hastigheten, temperaturen, tettheten, magnetfeltet og sammensetningen av vinden idet den farer forbi romsonden. Hver for seg vil de ti instrumentene kunne gi oss ny kunnskap om Sola. Men brukt sammen vil de garantert gi oss svar på mange uløste spørsmål – og sannsynligvis gi oss mange nye.
Back in black
Når Solar Orbiter er bare 0,284 AU fra Sola er den utsatt for like mye stråling som vi på Jorda hadde vært hvis vi hadde kunnet se opp på en himmel med 13 soler! Fjernmålingsinstrumentene gjemmer seg derfor bak et kraftig varmeskjold, med bare en liten luke for hvert instrument som kan åpnes når Sola skal fotograferes.
Det ytterste titanlaget av varmeskjoldet er dekket av et syltynt sjikt med en kullsvart substans kalt «Solar Black», utrolig nok lagd av forkullede beinrester! Det kan synes merkelig å kle seg i sort når man bader i varmen fra 13 soler, men «Solar Black» oppfyller kravene som stilles til et slikt varmeskjold: I tillegg til å absorbere den intense strålingen fra Sola for så å sende den ut igjen som varmestråling, flaker ikke stoffet av når det blir utsatt for UV-stråling over lang tid.
Litt bedre enn ISDN
Når dette skrives, er Solar Orbiter på den andre sida av Sola, nesten 1,4 AU fra Jorda. For å overføre store mengder data over slike avstander, trengs en stor og energikrevende sender. «Stor» og «energikrevende» lar seg vanskelig kombinere med et romfartøy der alt bør være så lett og energigjerrig som mulig. Antennene til Solar Orbiter må derfor være beskjedne, og når sonden er 1,4 AU unna oss, klarer den derfor bare å sende data med en rate på rundt 75 kbit/s. Det er ikke stort raskere enn ISDN-linjene vi måtte ta til takke med på 1990-tallet.
Denne kapasiteten skal attpåtil fordeles på ti instrumenter! Fjernmålingsinstrumentene har derfor svært strenge grenser for hvor ofte og hvor mye de kan observere. Mens jordnære romobservatorier gjerne kan observere 24/7, får Solar Orbiter-instrumentene i utgangspunktet bare lov til å ta bilder i seks tidagersperioder hvert år.
Orbiter vil ha mer – Parker mest
Solar Orbiter trosser intens solstråling og hete for å komme så nær Sola som 0,284 AU. Dette er allikevel bare barnemat i forhold til hva NASAs romsonde Parker Solar Probe er utsatt for. På sitt nærmeste vil Parker være 0,046AU fra Sola, det vil si omtrent ni solradier! Hastigheten til sonden vil komme opp i 200 km/s (0,064% av lyshastigheten), noe som med god margin gjør Parker til det raskeste menneskelagde objektet noensinne.
Bak det mer enn 11 cm tykke varmeskjoldet som tåler temperaturer opp mot 1400 °C, skjuler det seg tre in situ-instrumenter som måler elektromagnetiske felter og solvindpartikler. Om bord fins det også et fjernmålingsinstrument, men for ikke å smelte tar dette teleskopet bare bilder av gass utenfor solskiva.
… og alle var enige om at det hadde vært en fin tur
Hvem valgte den beste observasjonsstrategien av Iris, Sporty Spice og dr. Parker? Er det smartest å ta bilder døgnet rundt fra 1 AU? Eller ta bilder fra 0,284 AU og fra et skrått baneplan, med begrenset dataoverføringsrate og kommunikasjon? Eller la være å ta bilder, men heller måle solvind og partikler fra 0,046 AU?
Svaret er som alltid samarbeid. Parker Solar Probes direktemålinger er vanskelige å tolke hvis man ikke også kan se hvordan Sola ser ut. Solar Orbiters observasjoner er lettere å forstå hvis man vet hva Parker kan fortelle om forholdene like utenfor Solas atmosfære. Observasjonene som IRIS, Hinode og SOHO gjør i nærheten av Jorda får enda større verdi når man kan supplere med målinger tatt i to avstander nærmere Sola. Og sist, men ikke minst, Solar Orbiters unike bilder av Solas polområder er koronaen på verket.
Les flere spennende artikler om aktuell solforskning i Astronomi nr. 2