Hvordan vi leter etter tegn på liv i universet.
Are Vidar Boie Hansen, redaksjonsmedarbeider i Astronomi og lektor ved Akademiet Oslo
For mange er dette det mest spennende spørsmålet innen astronomien. Naturvitenskapen som beskjeftiger seg med dette, kalles astrobiologi. Astrobiologien er en helt ny vitenskap, som bruker kunnskap og metoder fra astrofysikk, kjemi, biologi og andre naturvitenskaper, men det berører også andre fagfelt, for eksempel filosofi og samfunnsvitenskap.
Livets vann
Foreløpig har vi ikke funnet noe slags liv noe annet sted i universet enn her på Jorda. På den andre siden har vi bare så vidt kommet i gang med letingen.
Slik vi forstår liv i dag er livsprosesser helt avhengige av flytende vann for å overleve. Dette betyr at liv bare kan eksistere på planeter – og tilsvarende objekter som måner og dvergplaneter – der flytende vann kan eksistere.
Som du kan lese i Astronomi 2/2022 var det først på midten av 1990-tallet at vi begynte å oppdage planeter rundt andre stjerner, og i dag har vi altså oppdaget mer enn 5000 av dem. Mange av disse planetene kan teoretisk sett ha liv, men hva konkret skal vi se etter for å avgjøre spørsmålet?
Det beste er selvfølgelig å observere levende organismer direkte. Det er imidlertid vanskelig å se hvordan vi skal få til dette når det gjelder liv utenfor vårt eget solsystem, og vanskelig nok her også, hvis de finnes. Vi må derfor nøye oss med indirekte observasjoner av hvordan liv påvirker omgivelsene sine.
Biosignaturer
En biosignatur eller biomarkør er en eller annen fysisk substans som produseres av levende organismer. Dette kan for eksempel være ioner, molekyler, mineraler eller fossiler. Hvis for eksempel et molekyl skal regnes som en biosignatur, må man være helt sikre på at det ikke er blitt dannet av naturlige prosesser som ikke forutsetter liv, såkalte abiotiske faktorer. Oksygenet i Jordas atmosfære stammer for det meste fra fotosyntese, men hvis vi finner en eksoplanet med oksygen i atmosfæren, betyr ikke det at vi kan konkludere med at det fins liv som driver fotosyntese der. Oksygenmolekyler kan nemlig også dannes av abiotiske faktorer.
Det er blitt foreslått hele 14 000 forskjellige atmosfæriske biosignaturer, men dessverre er ingen av dem hundre prosent sikre. I vårt eget solsystem har mange astronomer spekulert på om metan på Mars er et tegn på at det fins liv der. I dagens Mars-miljø forsvinner metan fra atmosfæren veldig fort. Likevel fins det ørsmå mengder metan i Mars-atmosfæren, så en eller annen mekanisme må altså fylle på med metan. Kan det være mikroorganismer? Foreløpig har man ikke konkludert, fordi man vil undersøke alle tenkelige abiotiske faktorer først.
En annen mulighet er å finne spesielle kombinasjoner av molekyler. Hvis vi finner metan sammen med molekyler som oksygen, ozon og karbondioksid, er det en sterkere indikasjon på liv.
Som alltid i vitenskapelige undersøkelser, er også målefeil en mulighet. I 2020 mente noen astronomer at funn av molekylet fosfin i atmosfæren til Venus ikke kunne forklares med abiotiske faktorer, og det kunne være et tegn på mikroorganismer i atmosfæren. En ny analyse av dataene viste at det enten ikke fins fosfin i Venus-atmosfæren, eller at det er så lite av det at det ikke er målbart.
Teknosignaturer
På slutten av 1800-tallet mente den amerikanske forretningsmannen og astronomen Percival Lowell at han kunne se rette streker på Mars i sitt 61 cm refraksjonsteleskop. Han tolket dette som irrigasjonskanaler, og spekulerte på om Mars var bebodd av en teknologisk avansert sivilisasjon som var rammet av tørke. På slutten av 1800-tallet var nettopp kanaler, som Suez-kanalen, toppen av høyteknologi. I 1909 viste observasjoner med det nye 1,5 m speilteleskopet på Mount Wilson at Lowells kanaler ikke eksisterer.
Kanalene på Mars er et eksempel på teknosignaturer, eller teknomarkører. Hvis det fins levende vesener som har utviklet avansert teknologi, kan vi lete etter tegn på teknologisk manipulering av omgivelsene.
Det fins mange mulige teknosignaturer. Den første man lette systematisk etter, var radiobølger. Radiobølger ble oppdaget av Heinrich Hertz i 1887, og så tidlig som i 1899, mente Nikola Tesla at han fanget opp kunstige radiosignaler fra Mars.
I 1960 satte radioastronomen Frank Drake i gang Project Ozma. Eksperimentet gikk ut på å lytte etter interstellare radiobølger fra sivilisasjoner på planeter rundt andre stjerner. Drake valgte ut stjernene Epsilon Eridani og Tau Ceti, siden de ligner på Sola og befinner seg ganske nær oss. Han lyttet til frekvenser rundt 1420 MHz, siden hydrogen naturlig sender ut radiostråling på denne frekvensen. Siden hydrogen er det vanligste grunnstoffet i universet, må en sivilisasjon som driver med radioastronomi kjenne til slik stråling.
Ingen signaler fra utenomjordiske sivilisasjoner ble funnet, men leting etter intelligent liv i universet var i gang. Leting etter tegn på intelligent liv i universet kalles i dag SETI (Search for Extra-Terrestrial Intelligence).
Wow!-signalet
15. august 1977 registrerte radioteleskopet Big Ear ved Ohio State University et sterkt radiosignal på en frekvens veldig nær 1420 MHz fra stjernebildet Skytten. Signalet ble registrert i 72 sekunder, noe som skyldes at teleskopet bare kunne justeres for høyde, så det skannet i lengderetningen ved hjelp av jordrotasjonen. Vi vet derfor ikke hvor lenge signalet egentlig varte.
Signalet var så oppsiktsvekkende at radioastronomen Jerry R. Ehman, som så det først, skrev Wow! ved siden av det på utskriften, og det er derfor kjent som Wow!-signalet. Det er aldri blitt observert igjen, og til tross for mange foreslåtte forklaringer er Wow!-signalet fortsatt et mysterium. Det inneholder tilsynelatende ingen modulasjon, som er en vanlig jordisk måte å pakke informasjon inn i en radiobølge, men fortsatt regnes Wow!-signalet som den beste kandidaten for et ekte signal fra utenomjordisk intelligens.
Breakthrough Listen
Det viktigste aktive SETI-prosjektet i dag er Breakthrough Listen. Prosjektet startet i januar 2016 og skal etter planen vare i ti år. Initiativet kom blant annet fra Frank Drake og Stephen Hawking, og prosjektet er finansiert av den russisk-israelske milliardæren Jurij Milner.
Breakthrough Listen bruker Green Bank Observatory i USA og Parkes Observatory i Australia til å lytte etter signaler fra to millioner nærliggende stjerner, foruten galaksekjerner, hvite dverger, nøytronstjerner, svarte hull og Melkeveiens sentrum. Prosjektet skal kunne registrere et radiosignal tilsvarende en vanlig flyradar rundt de nærmeste tusen stjernene.
Breakthrough Listen inkluderer også leting etter laserpulser i synlig lys ved hjelp av Automated Planet Finder-teleskopet ved Lick-observatoriet i USA. Dataene ligger åpent tilgjengelige på prosjektets nettside, slik at hvem som helst kan laste dem ned og analysere dem. Resultater publiseres hver sjette måned.
Foreløpig har man ikke funnet noen signaler fra utenomjordiske sivilisasjoner. Dette er kanskje skuffende, men for det første er dette i seg selv et funn, og for det andre har Breakthrough Listen funnet mange interessante signaler fra astrofysiske prosesser som hjelper forskerne videre.
Denne artikkelen ble publisert i Astronomi 2/2022.
Meld deg inn i Norsk Astronomisk Selskap for å abonnere på bladet. Melder du deg inn nå, vil du fortsatt få ettersendt nr. 2. Neste utgave kommer ut i løpet av september.